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Abstract

The non-crystallographic symmetry of d-dimensional
(dD) quasiperiodic structures is incompatible with
lattice periodicity in dD physical space. However, dD
quasiperiodic structures can be described as irrational
sections of nD (n > d) periodic hypercrystal structures.
By appropriate oblique projection of particular hyper-
crystal structures onto physical space, discrete periodic
average structures can be obtained. The boundaries of
the projected atomic surfaces give the maximum
distance of each atom in a quasiperiodic structure from
the vertices of the reference lattice of its average
structure. These maximum distances turn out to be
smaller than even the shortest atomic bond lengths. The
metrics of the average structure of a 3D Ammann tiling,
for instance, with edge lengths of the unit tiles equal to
the bond lengths in elemental aluminium, correspond
almost exactly to the metrics of face-centred-cubic
aluminium. This is remarkable since most stable
quasicrystals contain aluminium as the main constitu-
tent. The study of the average structure of quasicrystals
can be a valuable aid to the elucidation of the geometry
of quasicrystal-to-crystal transformations. It can also
contribute to the derivation of the physically most
relevant Brillouin (Jones) zone.

1. Introduction

The concept of average structure (AS) is essential for
the analysis and description of all kinds of real crystal
structures. When looked at in detail, because of the
existence of defects and thermal vibrations of the atoms,
structures of real crystals are never periodic. In addition,
structural disorder and/or superordering phenomena
may be present in a crystal (cf. Jagodzinski & Frey, 1993,
and references therein). The time and space average
over a real structure is called the average structure. It
corresponds to the ideal structure convoluted with the
probability density function (p.d.f.) of the atoms. The
lattice of an AS is called the reference lattice. The AS is
the only structural information that can be obtained
from a diffraction-data-based structure analysis
restricted to Bragg re¯ections. The mapping of a real
structure onto its AS is unidirectional only.

In the case of an incommensurately modulated
structure (IMS) and of a composite structure (CS),
averaging can be performed on two levels. Statistical
static and dynamic structural ¯uctuations can be aver-
aged as described above. The result is an ideal aperiodic
crystal structure convoluted with the p.d.f. of the atoms,
i.e. an aperiodic AS. Furthermore, by convenient
projection, a periodic AS can be obtained from the
aperiodic AS. For an IMS, the projection has to occur
along the modulation wave vectors and, for a CS, onto
the sublattices. All atomic positions of an IMS with
displacive modulation can be obtained by bounded
shifts from the corresponding positions of its AS. A one-
to-one mapping is possible. In the case of a super-
structure or an IMS with density modulation, the AS
does not exhibit fully occupied atomic sites. If the
modulation function is a statistical distribution function
(as in most cases), a one-to-one mapping between the
atomic sites of such an IMS and the reference lattice
nodes of its AS is no longer possible.

For a quasicrystal (QC) with noncrystallographic
symmetry, it is commonly assumed that no `discrete'
periodic average structure could exist. Discrete average
structure means that the projection of an in®nite
aperiodic structure into one unit cell of the AS does not
®ll it densely. In the 1D quasiperiodic case, the only
possible point-symmetry groups, �1 or 1, are crystal-
lographic ones. It is clear that a 1D QC can also be
described as an IMS. Consequently, 1D quasicrystals
exhibit periodic average structures. Whether they are
discrete or not depends on the properties of the `atomic
surfaces' (for a de®nition see x2). In the case of 2D or 3D
quasiperiodic structures with noncrystallographic point
symmetry, however, the possibility of discrete periodic
average structures is not so obvious.

The problem of periodic components in quasicrystals
has been studied for many years. Wolny & Lebech
(1986) and Spal (1986) described icosahedral quasi-
crystals as complex composite crystals consisting of ten
different modulated sublattices. Wolny (1993, and
references therein) also performed reciprocal-space
analysis investigating periodic components in the
diffraction patterns of quasicrystals. Duneau & Oguey
(1990, 1991) and Duneau (1991) demonstrated that
periodic reference lattices generally exist under certain
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conditions concerning size and shape of atomic surfaces
in the nD description. They derived as suf®cient condi-
tion that the atomic surface must be a unit cell for a
lattice in perpendicular space (Duneau, 1991). Then, a
bounded one-to-one mapping of the vertices of the
quasiperiodic structure to the vertices of the reference
lattice is possible (Duneau & Oguey, 1990, 1991). In the
case of more complex atomic surfaces, a decomposition
into parallelepipeds, being again unit cells in perpendi-
cular space, is proposed. Each of the resulting sublattices
would again display a reference lattice.

The motivation for the present work stems from the
study of geometrical aspects of quasicrystal-to-crystal
phase transformations (cf. Honal et al., 1998). The
existence of an AS of a quasicrystal may also be
important for the derivation of a physically relevant
Brillouin or Jones zone (cf. Poon, 1992; LIÈck & Kek,
1993). Since real quasicrystal structures display very
complex atomic surfaces, a simple method should be
developed to derive AS in a similar way as in the case of
a disordered structure or an IMS. Thus, not the special
cases where one-to-one mapping is possible, but the
more realistic ones where one-to-one mapping is
unfortunately not possible should be studied on model
structures. The lack of the one-to-one mapping property
between a quasicrystal structure and its approximant
may be the origin of the inherent disorder observed
after quasicrystal-to-crystal transformations.

The 1D, 2D and 3D quasiperiodic structures analysed
in the following are model structures for the experi-
mentally observed classes of stable quasicrystals. The
average structures and their properties are discussed in
direct as well as in reciprocal space. Background infor-
mation on the quasiperiodic prototype structures
analysed in the present paper as well as on the nD
embedding method can be obtained, for instance, from
Steurer & Haibach (1998) and Yamamoto (1996).

2. The average structure of the Fibonacci sequence

2.1. De®nitions

The Fibonacci sequence (FS) is the classical example
of a 1D quasiperiodic structure (cf. Janssen, 1986;
Steurer & Haibach, 1998, and references therein).
Starting with S, it can be obtained by iteratively applying
the substitution rule S ! L, L ! LS. If one assigns a
short interval to S and a long one to L, with L � �S and
� � 2 cos��=5� � 1:618, a quasiperiodic sequence of
vertices (quasilattice) results. The frequency of L tiles is
�-times larger than that of S tiles. `Decoration' of the
vertices with atoms represents the best-known example
of a 1D quasiperiodic structure.

The Fibonacci sequence can also be generated by an
irrational cut of a 2D hypercrystal structure with the 1D
physical space (Fig. 1a). The 2D embedding space V �

V||�V?, consists of two orthogonal 1D subspaces, V||

(physical space) and V? (perpendicular space). A
hypercrystal structure is described by a hyperlattice
decorated with hyperatoms. The perpendicular space
components of the hyperatoms are called atomic
surfaces. The physical space components of the
hyperatoms correspond to the real 3D atoms. In all our
examples, however, we use 1D point atoms for simpli-
city. The 2D lattice is spanned by the basis vectors

Fig. 1. (a) Direct- and (b) reciprocal-space representation of the 1D
Fibonacci sequence in the 2D description. The grey bars indicate the
projection direction of the atomic surfaces (thick line segements) in
(a), and the reciprocal-lattice line containing the main re¯ections
(full circles) in (b). The horizontal thick dark-grey bars in (a)
represent the projected atomic surfaces. The unit-cell length of the
average structure is marked by A.
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with a* the length of the vector of the experimentally
accessible reciprocal parallel space

a� � ja�j � 1=�S�2� ���: �2�
Subscript V denotes vector components given on a
Cartesian coordinate system in V space (V basis);
subscript D will refer to the nD hypercrystal basis. The
2D square lattice is decorated by line segments (atomic
surfaces). An atomic surface of such a canonical tiling
results from the projection of one unit cell upon V?. The
2D hypercrystal structure is centrosymmetric. Shifting
physical space along V? leads to locally isomorphous
homometric 1D quasiperiodic structures.

The point density �Fib
P of the Fibonacci chain, i.e. the

number of vertices per unit length, amounts to

�Fib
P � 1=aFib

av � a��2� ��=�3ÿ �� � a��2 �3�
with the lattice parameter of the average structure

aFib
av � lim

n!1
��mS� nL�=�m� n��

� lim
n!1
�S�1� �n=m�=�1� n=m��

� S�1� �2�=�1� �� � �3ÿ ��S: �4�
In reciprocal space, the 1D diffraction pattern

M� � Hk �P2

i�1

hia
�
i ja�1 � a�; a�2 � �a�; hi 2 Z

� �
�5�

can be considered as projection of a 2D reciprocal lattice
�� onto physical space (Fig. 1b). The basis of �� is given
by

d�1 � a�
1

ÿ�
� �

V

; d�2 � a�
�
1

� �
V

: �6�

2.2. Average structure

An appropriate AS of the Fibonacci sequence can be
obtained by oblique projection of the atomic surfaces
along ��1 1�D onto physical space. The projection direc-
tion is equivalent to the wave vector of a saw-tooth
modulation of an IMS. The projector applied on
components can be written as

�k � � 1 �3ÿ 2���V
� f1=�a��2� ���g��3ÿ ���3ÿ ���D �7�

on V and D bases, respectively. The periodicity of the
average structure aFib

av becomes

aFib
av � �kd1 � �3ÿ ��S: �8�

Since the 2D hyperlattice of the FS is primitive and the
atomic surface is a unit cell in V?, a bounded one-to-one
mapping of the vertices of the FS onto the vertices of the
reference lattice is possible (Duneau, 1991). Conse-
quently, the period of the AS can also simply be derived
from the condition that the densities of the quasiperi-
odic structure and its average structure have to be equal.
Of course, there are an in®nite number of different
oblique projections leading to discrete average struc-
tures. The projection along ��1 1�D, however, is the only
one yielding occupancy factors of the projected atomic
surfaces equal to one. This is a necessary condition for a
bounded one-to-one mapping of the quasiperiodic
structure onto the periodic average structure. By the
oblique projection, the atomic surfaces of length
�1� ��=�a��2� ��� are shrunk by a factor of �2� ÿ 3�.
The packing density of the average structure, i.e. the
ratio of the size of projected atomic surfaces to the AS
lattice parameter, is 5ÿ1/2 � 0.447.

In 1D reciprocal space, the vector spanning the lattice
of main re¯ections related to the average structure is
given by a�Fib

av � aFib
av � 1. In 2D hyperspace, the reci-

procal-lattice line containing the main re¯ections runs
along �1 1�D as given by the orthogonality relation

�ÿ1 1�D h1

h2

� �
D

� 0! h1 � h2: �9�

Thus, all re¯ections of type (h h) are main re¯ections.
The weight of the average structure compared with

the actual structure can be estimated by the ratio rI of
the sum of intensities of the main re¯ections to the sum
of intensities of all re¯ections. For realistic conditions, rI

amounts to�43.5% (X-ray diffraction, all vertices of the
FS decorated with Al atoms, L = 4 AÊ , isotropic dis-
placement parameter B � 1 AÊ 2, 0 � sin �=� � 1 AÊ ÿ1,
ÿ60 � hi � 60, i � 1, 2; 4385 re¯ections).

3. The average structure of the Penrose tiling

3.1. De®nitions

A typical example of a 2D quasiperiodic structure
with local ®vefold symmetry is the Penrose tiling (PT)
(cf. Penrose, 1974; Pavlovitch & Kleman, 1987; Steurer
& Haibach, 1998, and references therein). It can be
generated from two unit tiles: a skinny (acute angle
�s � �=5� and a fat (acute angle �f � 2�=5� rhomb with
equal edge lengths ar and areas As � a2

r sin��=5�,
Af � a2

r sin�2�=5�. The areas of these two unit tiles as
well as their frequencies are both in the ratio 1 to �.

In the nD approach, the Penrose tiling can be
obtained as an irrational cut of a 4D hypercrystal
structure with the 2D physical space (Fig. 2). The 4D
embedding space V � Vjj � V? consists of the two
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orthogonal 2D subspaces V|| and V?. The 4D lattice is
spanned by the basis vectors

di �
2

5a�

cos�2�i=5� ÿ 1

sin�2�i=5�
cos�4�i=5� ÿ 1

sin�4�i=5�

0BB@
1CCA

V

; with i � 1; . . . ; 4: �10�

a* gives the length of the four reciprocal parallel space
basis vectors which allow for indexing the diffraction
pattern with integers. The 4D hyperrhombohedral

lattice is decorated with four atomic surfaces of pen-
tagonal shape. They occupy the special positions
p=5 �1 1 1 1�D, p � 1; . . . 4, on the body diagonal. The
pentagon radii are

�1;4 � 2�2ÿ ��=5a� and �2;3 � 2�� ÿ 1�=5a� �11�

for the atomic surfaces with p � 1; 4 and p � 2; 3,
respectively. Their orientations can be obtained from
Fig. 2(a). The 4D structure is centrosymmetric.

Fig. 2. (a) (1 0 1 0)V section of the
Penrose tiling in the 4D descrip-
tion. The projections of one 4D
unit cell onto parallel space
(1 1 0 0)V and perpendicular space
(0 0 1 1)V are also shown. The
atomic surfaces [line elements in
the (1 0 1 0)V section] projected
upon V? appear as regular penta-
gons. Upon V||, they are projected
to points. The direction of the
oblique projection is marked by a
grey strip. The image of the atomic
surfaces projected within this strip
is illustrated by a horizontal thick
bar. The orientation of the
(1 0 1 0)V section with respect to
the 2D Penrose tiling is indicated
by a line in the lower right corner
of the ®gure. The point marked A
gives the dimension of the average
unit cell along (1 0 0 0)V. Within
the gap marked, no atomic surface
on the particular diagonal is cut by
physical space (x1). (b) Schema-
tical diffraction pattern of the
Penrose tiling (Al atoms, isotropic
displacement parameter 1 AÊ 2,
edge length of the Penrose unit
rhombs, ar = 4 AÊ ). All re¯ections
are shown within 10ÿ4 |F(0)|2 <
|F(H)|2 < |F(0)|2 and 0 � |H|| | �
2 AÊ ÿ1. The main re¯ections corre-
sponding to the average structure
are located on the monoclinic
lattice nodes. The size of the full
circles is related to the respective
re¯ection intensities.
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The edge length ar of a Penrose rhomb is related to
the length a* of the reciprocal-basis vectors by
ar � 2�2=5a�. The point density of a Penrose tiling can
be derived from the ratio of the relative number of unit
tiles in the tiling to their area

�PT
P � �1� ��=fa2

r �sin��=5� � � sin�2�=5��g
� �5=2��a��2�2ÿ ��2 tan�2�=5�: �12�

In reciprocal space, the 2D diffraction pattern

M� � Hk �P4

i�1

hia
�
i

���a�i � a�
cos�2�i=5�
sin�2�i=5�

� �
; hi 2 Z

� �
�13�

can be considered as a projection of a 4D reciprocal
lattice �� onto physical space (Fig. 2b). The basis of ��

is

d�i � a�
cos�2�i=5�
sin�2�i=5�
cos�4�i=5�
sin�4�i=5�

2664
3775

V

; with i � 1; . . . ; 4: �14�

3.2. Average structure

An appropriate average structure of the PT can be
obtained by oblique projection of the atomic surfaces
along �1 1 1 1�D and ��4 1 1 1�D onto physical space
(Fig. 2a). The projector

�k � 1 0 �1 ÿ��3ÿ ��1=2

0 1 0 ÿ�

" #
V

� 2�5�1=2=5a�
0 �� ÿ 1�=2 ÿ�� � 1�=2 1

0 cos��=10� ÿ cos��=10� 0

� �
D

�15�
maps the basis of the 4D lattice di, i � 1; . . . ; 4, onto a
monoclinic reference lattice with basis

aPT
1 av � �k�d2� � 2�5�1=2=5a�

1

0

� �
;

aPT
2 av � �k�d4� � 2�5�1=2=5a�

sin��=10�
cos��=10�

� �
;

�k�d1� �
0

0

� �
; �k�d3� � ÿ�k�d2� ÿ �k�d4�:

�16�

The lattice parameters of the monoclinic average
structure become

aPT
1 av � aPT

2 av � j�kd2j � j�kd4j � �2=5a���2� ÿ 1�
� ar�3ÿ ��=�;

� � ���kd2; �
kd4� � 2�=5:

�17�

Since the symmetry of the average structure is not
monoclinic but orthorhombic, a centred orthorhombic
unit cell with lattice parameters

aPT
1 av � �3ÿ ��ar; aPT

2 av � ar�3ÿ ��3=2=� �18�
can also be used.

The projector leaves all points of the physical space
invariant (i.e. the vertices of the PT). Since each of those
points results from a cut of the physical space with one
particular atomic surface, it also ®xes one point of this
atomic surface. The centre of the atomic surface, which
is always at a special position on a body diagonal
(1 1 1 1)D, is projected upon a node of the monoclinic
reference lattice. Consequently, the boundaries of the
projected atomic surfaces give the limits for the
maximum distance of a PT vertex from a reference
lattice node. According to Fig. 3, this maximum distance
is given by

�2�2 � 2�2�� ÿ 1�=5a� � 2�=5a� � ar=�: �19�
The oblique projection distorts the atomic surfaces
elliptically (Fig. 3a), i.e. the circumcircles of the
pentagonal atomic surfaces become ellipses. The long
axis of each ellipse corresponds to an elongation of the
circumcircle radius by a factor �2, the short axis to a
contraction by 1=�. The distances along the unit-cell
edges remain unscaled. The packing density of the
average structure, i.e. the ratio of the area of the
projected atomic surfaces to the area of the monoclinic
unit cell, is 2=�3� � 1� � 0:342.

A general 4D lattice node (n1 n2 n3 n4)D is projected
upon a node �m1 m2� � �ÿn3 � n4 n2 ÿ n3�D of the
monoclinic reference lattice. Consequently, all hyper-
atoms that differ only by vectors (n1 n2 n2 n2) are
projected upon one another. This is shown schematically

Fig. 3. One unit cell of the monoclinic average structure of the Penrose
tiling decorated with the projected atomic surfaces. The half-axes of
the ellipses that circumscribe the projected atomic surfaces are
given. �2 denotes the radius of the large pentagonal atomic surface
in the 4D description of the PT.
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in Fig. 4(a). The occupancy factor of the averaged
hyperatoms can be derived from the ratio of the total
area of atomic surfaces in one unit cell spanned by the
vectors (1 0 0 0)D and (1 1 1 1)D to the area of this unit
cell (Fig. 4a). The occupancy factor is �3ÿ ��=� � 0:854.
It can also be calculated by considering the condition
that the densities of the quasiperiodic structure and its
average structure have to be equal.

There is, however, an overlap of one region D of each
large pentagonal atomic surface and regions Q and K of
the small ones (for a de®nition of D, Q and K see Jaric,
1986). This corresponds to the cases where the short
diagonal of a skinny unit rhomb (connecting vertices of
types D and K or D and Q) lies fully inside a projected
hyperatom (Fig. 4b). The overlapping regions cover a
fraction of 1=5�2 � 0:076 of the total area of the atomic
surfaces. This corresponds to one ®fth of the frequency
of skinny rhombs in a Penrose tiling. Each doubly

occupied averaged hyperatom is accompanied by two
unoccupied ones. The frequency of singly occupied
averaged hyperatoms is 0.7236, of doubly occupied ones
0.0652 and of unoccupied ones 0.2112. Each fat unit tile
along all `worms' (chains of fat and skinny PT unit
rhombs with parallel edges) propagating perpendicular
to the aforementioned short diagonals contains one
empty averaged hyperatom. Thus, we have to sum up the
frequencies of the vertices connected with such con®g-
urations (Henley, 1986):

��3ÿ ��=5���fD � fJ � fS3 � 2fK � 3fS4 � 5fS � 5fS5�
� ��3ÿ ��=5����ÿ2 � �ÿ3 � �ÿ6 � 2�ÿ5 � 3�ÿ7

� 51=2�ÿ5 � 51=2�ÿ7�
� 0:2112 �20�

The worms propagating along the four other directions
contain empty averaged hyperatoms only at the cross-
ings with the ®rst one.

The reciprocal-lattice plane containing the main
re¯ections corresponding to the average structure is
spanned by the reciprocal basis vectors

�a�1�PT
av � a��3ÿ ��1=2 cos��=10�

ÿ sin��=10�
� �

V

;

�a�2�PT
av � a��3ÿ ��1=2 0

1

� �
V

:

�21�

All re¯ections of type H��h1 h2�av��0 h2ÿ�h1�h2�h1�D
are main re¯ections according to

0

h2

ÿ h1 ÿ h2

h1

0BB@
1CCA

D

�
0 0

0 1

ÿ1 ÿ1

1 0

0BB@
1CCA

av

h1

h2

� �
av

: �22�

The subscript av denotes components given on the basis
de®ned by ai

PT
av , i � 1; 2.

The weight of the average structure compared with
that of the actual structure can be estimated by the ratio
rI of the sum of intensities of the main re¯ections to the
sum of intensities of all re¯ections. For realistic condi-
tions, rI amounts to �12.6% (X-ray diffraction, all
vertices of the PT decorated with Al atoms, ar � 4 AÊ ,
isotropic displacement parameter B � 1 AÊ 2,
0 � sin �=� � 1 AÊ ÿ1, ÿ13 � hi � 13, i � 0; . . . ; 4 with
h0 � ÿ

P4
i�1 hi; 182 972 re¯ections within 14 orders of

magnitude). If the fact that at the same time this average
structure is virtually present at ®ve different orientations
is taken into account, the weight increases to �37.5%
[for counting the (0 0 0 0) re¯ection only once].

3.3. The Penrose tiling and its ®vefold twinned average
structure

Depending on the choice of the kernel for the oblique
projection, one of ®ve differently oriented symme-

Fig. 4. (a) Two 4D unit cells of the PT related by the vector (1 0 0 0)D

projected upon the perpendicular space. The thick line marks one
unit cell of the structure which is mapped into one averaged
hyperatom by oblique projection. The overlapping regions of the
atomic surfaces (of types D, K and Q) of the PT are shown in dark
grey. (b) Monoclinic average structure superposed by a PT. Each
vertex of the PT falls into one averaged hyperatom. The vertices
marked D and Q share one averaged hyperatom. These vertices are
generated from the regions shown in dark grey in (a). The vertex
marked with the black full circle may jump to the vertex marked
with the grey full circle to avoid doubly occupied averaged
hyperatoms. Each fat unit tile along the grey-shaded worm contains
one empty averaged hyperatom.
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trically equivalent monoclinic average structures results.
We call the union of all ®ve sets of monoclinic reference
lattices a 5-lattice and of the average structures a
5-structure. In the 5-structure, each pair of vertices
forming a short diagonal of a skinny rhomb falls inside
one averaged hyperatom. No other vertex of the PT
shares an averaged hyperatom with another one.

Each vertex P of the PT belongs to ®ve intersecting
averaged hyperatoms, which are assigned to ®ve nodes
Li, i � 0; . . . ; 4 of the 5-lattice (Fig. 5a), and it coincides

Fig. 5. (a) Set of ®ve averaged hyperatoms resulting from ®ve
symmetrically equivalent oblique projections. The vertex P of the
PT is the barycentre of the set Li, i � 0; . . . ; 4. The lattice nodes Li

belong to the ®ve monoclinic reference lattices which are
symmetrically equivalent under ®vefold rotation. (b) The vertex P
of the PT is generated by cutting the point P0 of a large pentagonal
atomic surface with centre M0 by physical space. By oblique
projection, the point P0 is mapped onto the point P and M0 onto L0.
By changing the kernel of the projection matrix in an appropriate
way, the resulting monoclinic average structure is rotated by 2�=5.

Fig. 6. Characteristic twofold (a) and ®vefold (b) sections of the
Ammann tiling in the 6D description. The vectors d01 and d02
correspond to the vectors �0 0 0 �1 0 1�D and �0 1 �1 0 0 0�D in (a), and
to �0 1 1 1 1 1�D and �1 0 0 0 0 0�D in (b), respectively. The oblique
projections in the respective sections are indicated by grey strips. In
the case shown in (a), the projected atomic surfaces occupy much
less space than in (b).
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with the barycentre B � �1=5�P4
i�0 Li. The vectors

si � Li ÿ B, i � 0; . . . ; 4, of a vertex P of the PT to the
lattice nodes Li are

si �
x0

y0

� �
cos�6�i=5� ÿ sin�6�i=5�
sin�6�i=5� cos�6�i=5�

� �
� � � 1 0

0 � ÿ 1

� �
� cos�2�i=5� ÿ sin�2�i=5�

sin�2�i=5� cos�2�i=5�
� �

; i � 0; . . . ; 4:

�23�
The vector P0 � �x0; y0� points from the origin M0 of an
atomic surface to that point on it that generates the
vertex P of the PT (Fig. 5b).

The 5-lattice may be very helpful in the elucidation of
the geometrical relationships between a quasicrystal
structure and the domain structure formed during the
transformation to the approximant. This has been
demonstrated for the example of decagonal Al±Co±Ni
(Honal et al., 1998). In that case, the experimentally
observed approximant of decagonal Al±Co±Ni is a
superstructure of the average structure of decagonal
Al±Co±Ni itself.

4. The average structure of the Ammann tiling

4.1. De®nitions

The 3D analogue to the Penrose tiling is called
Ammann tiling (AT) or 3D Penrose tiling (cf. Janssen,

1986; Levine & Steinhardt, 1986; Socolar & Steinhardt,
1986; Steurer & Haibach, 1998, and references therein).
It can be constructed from two unit tiles: one prolate and
one oblate rhombohedron with all edge lengths equal to
ar. Each face of such a rhombohedron is a rhomb with
acute angles �r � arccos�5ÿ1=2� � 63:44�. Their volumes
are given by

Vp � �4=5�a3
r sin�2�=5�;Vo � �4=5�a3

r sin��=5� � Vp=�:

�24�
Their frequencies in the AT are in the ratio � : 1. The

point density can be calculated by

�AT
p � �� � 1�=��Vp � Vo� � ��=a3

r � sin�2�=5�: �25�
The Ammann tiling can be obtained as an irrational

cut of a 6D hypercubic crystal structure. The 6D
embedding space V � Vjj � V? consists of two 3D
orthogonal subspaces V|| and V?. The 6D lattice is
spanned by the basis vectors

d1 �
1

2a�

0

0

1

0

0

1

0BBBBBBBB@

1CCCCCCCCA
V

;

di �
1

2a�

sin � cos�2�i=5�
sin � sin�2�i=5�

cos �

ÿ sin � cos�4�i=5�
ÿ sin � sin�4�i=5�
ÿ cos �

0BBBBBBBB@

1CCCCCCCCA
V

;

i � 2; . . . 6; � � 63:44�:

�26�

The atomic surfaces of this canonical tiling result from
the projection of the 6D unit cell upon the perpendicular
space. They are of triacontahedral shape and occupy the
hyperlattice nodes. The edge length of the rhombs
covering such a triacontahedron is equivalent to
�?�di� � 1=2a�, the perpendicular-space component of
the 6D basis vectors. The 6D structure is centrosym-
metric.

4.2. Average structure

In Fig. 6a, the characteristic twofold section of the
direct space of the Ammann tiling in the 6D repre-
sentation is given. Twofold section means that a twofold
axis of the 6D hyperlattice lies in this section. The grey
bars indicate the oblique projection of the atomic
surfaces along ��1 1 1 0 1 0�D, �0 1 �1 1 0 �1�D and
��1 0 0 1 �1 1�D onto physical space by the projector

Fig. 7. Perspective view of one 3D unit cell of the average structure of
the Ammann tiling. The face-centred unit cell is decorated by
undistorted but shrunk triacontahedra resulting from the oblique
projection.
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�k �
1 0 0 0 0 ÿ�2� ÿ 3�
0 1 0 0 2� ÿ 3 0

0 0 1 2� ÿ 3 0 0

0B@
1CA

V

� 1

2a�

ÿ�2� ÿ 3� ÿ�� ÿ 1� ÿ�� ÿ 1� 2ÿ � 1 2ÿ �
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The lattice parameters of the resulting cubic average
structure (Fig. 7) are

aAT
1 av � �k

0

�1
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0

0

0

0BBBBBBBB@
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D

� 1

a�

� ÿ 1

0

� ÿ 2

0B@
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V

;

aAT
2 av � �k

0

0

0

�1

0

1

0BBBBBBBB@
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D

� 1

a�

0
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0

0B@
1CA

V
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aAT
3 av � �k

�1

0

0

0

�1

0
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D

� 1

a�
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0
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0B@
1CA

V

;

aAT
1 av � aAT

2 av � aAT
3 av � �tan��=5��=a� � 2ar tan��=5�:

�28�

The projected basis vectors di, i � 1; . . . ; 6, centre the
faces of the cubic unit cell. Thus we obtain a face-
centred-cubic average structure.

The projected atomic surfaces are of regular tri-
acontahedral shape and by a factor cos ' � 0:230,
' � arctan��3�, smaller than the original ones. With the
boundaries of the projected atomic surfaces also the
limit for the maximum distance of an AT vertex from a
reference lattice node is given by �ar cos '. With the
constraint of equal densities of the quasiperiodic struc-
ture and its average structure, an occupancy factor of
5=�2� � 1� � 1:180 results.

It follows from the projection of a general 6D lattice
node

�k�n1 n2 n3 n4 n5 n6�D

� � ÿ 1

2

�2ÿ ����ÿn2 ÿ n3 � n4 � 2n5 � n6��
ÿ n1 ÿ n2 ÿ n3 � n5�
�3ÿ ��1=2=��n2 ÿ n3 ÿ n4 � n6�
�2ÿ ����2n1 � n2 � n3 � n4 � n6��
� n1 � n4 � n5 � n6�

0BBBBBB@

1CCCCCCA
av

�29�

that all 6D lattice nodes differing only in vectors
�n1 n2 n3 n4 n5 n6�D with n1 � n3 � n4 � 0, n2 ÿ n4 ÿ n5 �
0 and n1 � n2 � n6 � 0 are projected onto the same
averaged hyperatoms. Each triacontahedron overlaps
with eight surrounding ones in volumes corresponding
to one oblate rhombohedron in each case. For example,
the cubic unit cell spanned by the vectors ��1 1 1 0 1 0�D,
�0 1 �1 1 0 �1�D and ��1 0 0 1 �1 1�D contains one triaconta-
hedron at the eight corners and one in the body centre
��1 1 0 1 0 0�D. Since the cubic unit cell contains in total
20 prolate and 12 oblate rhombohedra, the eight over-
lapping oblate rhombohedra correspond to a fraction
2=�5� � 3� � 0:180. This means that 82% of all aver-
aged atomic surfaces contain just one vertex of the
Ammann tiling and 18% contain pairs of two vertices.
These vertex pairs form the short diagonal of the oblate
unit rhombohedra.

In a realistic quasicrystal structure model, the short
diagonal of the oblate rhombohedra could only be
alternately occupied if the edge length ar of the unit tiles
corresponds to the bond length. Thus, a realistic quasi-
crystal structure would not show the problem of an
occupancy factor of the averaged hyperatoms larger
than one. If the vertices of the AT are decorated with
aluminium atoms, giving ar � 2.864 AÊ (i.e. the bond
length in elemental aluminium), the average structure
would have lattice parameters aAT

i av � 2ar tan��=5� �
4.161 AÊ , compared with 4.045 AÊ for elemental alumin-
ium. The maximum distance of a vertex of the AT from a
lattice point of the average structure would be
�ar cos ' � 1:066 AÊ .

The packing density of the average structure, i.e. the
ratio of the volume of the projected atomic surfaces to
the area of the cubic unit cell, is calculated as

4� cos ' sin�2�=5�=�tan��=5��3 � 0:195: �30�

�k �
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1CA

V
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0 tan��=5� ÿ tan��=5� ÿ tan��=5� 0 tan��=5�
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D
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The characteristic ®vefold section is given in Fig. 6(b).
The oblique projection along the direction indicated by
the grey bars and along two other symmetrically
equivalent directions leads to a rhombohedral AS. Its
packing density, however, is much higher than that of
the face-centred-cubic AS.

The reciprocal lattice corresponding to the AS is
spanned by the reciprocal basis vectors

�a�1�AT
av � a� tan

3�

10

cos��=2�
0

ÿ sin��=2�

0B@
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V

;

�a�2�AT
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V

;

�a�3�AT
av � a� tan
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10

ÿ sin��=2�
0

ÿ cos��=2�

0B@
1CA

V

:

�31�

They are by a factor �2 larger than the reciprocal basis
vectors of the cubic setting which can be alternatively
used for indexing the icosahedral phase (setting 2 of
Steurer & Haibach, 1998). All re¯ections of type

H � �h1 h2 h3�av

� 1=2��ÿ h1 � h3��ÿ h1 � h2��ÿ h1 ÿ h2��ÿ h2 � h3�
�h1 � h3��h2 � h3��D

are main re¯ections according to

1

2

ÿh1 � h3

ÿh1 � h2

ÿh1 ÿ h2

ÿh2 � h3

h1 � h3

h2 � h3

0BBBBBB@
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D

� 1

2

ÿ1 0 1

ÿ1 1 0

ÿ1 ÿ1 0

0 ÿ1 1

1 0 1

0 1 1
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1CCCCCCA
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h1

h2

h3

0@ 1A
av

: �32�

The subscript av denotes components given on the basis
de®ned by aAT

i av, i � 1; . . . ; 3.
The weight of the average structure compared with

the actual structure can be estimated by the ratio rI of
the sum of intensities of the main re¯ections to the sum
of intensities of all re¯ections. For experimental condi-
tions, rI amounts to �3.8% (X-ray diffraction, all
vertices of the PT decorated with Al atoms, ar � 4 AÊ ,
isotropic displacement parameter B � 1 AÊ 2,
0 � sin �=� � 1 AÊ ÿ1, jH?j � 0:5 AÊ ÿ1, ÿ6 � hi � 6,
i � 1; . . . ; 6; 321 862 re¯ections). Taking into account
that this average structure is virtually present at 20=8
different orientations at the same time, the weight
increases to �10.8% [for counting the 0 0 0 0 re¯ection
only once].

5. Conclusions

It has been demonstrated that for the three prototypes
of quasicrystal structures, the 1D Fibonacci sequence,
the 2D Penrose tiling and the 3D Ammann tiling,
discrete periodic average structures exist. The method
proposed here for the derivation of AS by oblique
projection is well suited for arbitrarily complex atomic
surfaces and is easy to apply. A bi-unique mapping of
the vertices of the quasiperiodic structure onto the
averaged atomic surfaces of the AS has only be found in
the case of the 1D FS. For 2D PT and 3D AT, only a
unique mapping is possible. Thus, the 1D FS exhibits an
AS in a similar way to a displacively modulated struc-
ture. 2D PT and 3D AT resemble modulated structures
with both a density (i.e. ordering of vacancies and
atoms) and a displacement modulation. The physical
relevance of such an AS depends on size, occupancy
factor and packing density of the projected atomic
surfaces which give the limit for the distance of actual
atoms from the nearest lattice point of the average
structure.
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